On the Schur multiplier of finite

نویسندگان

چکیده

Abstract In this article, we prove that the Schur multiplier of a finite

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

on the order of the schur multiplier of a pair of finite $p$-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

متن کامل

on the order of the schur multiplier of a pair of finite p-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

متن کامل

on a conjecture of a bound for the exponent of the schur multiplier of a finite $p$-group

let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2022

ISSN: ['1435-4446', '1433-5883']

DOI: https://doi.org/10.1515/jgth-2022-0039